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Abstract 35 

 36 

Floods are the primary natural hazard in the French Mediterranean area causing damages 37 

and fatalities every year. These floods are triggered by heavy precipitation events (HPEs) 38 

characterized by limited temporal and spatial extents. A new generation of regional climate 39 

models at the kilometer scale have been developed, allowing an explicit representation of 40 

deep convection and improved simulations of local-scale phenomena such as HPEs. 41 

Convection-Permitting regional climate Models (CPMs) have been scarcely used in 42 

hydrological impact studies, and future projections of Mediterranean floods remain uncertain 43 

with Regional Climate Models (RCMs). In this paper, we use the CNRM-AROME CPM (2.5 44 

km) and its driving CNRM-ALADIN RCM (12 km) at the hourly timescale to simulate floods 45 

over the Gardon at Anduze catchment located in the French Mediterranean region. Climate 46 

simulations are bias-corrected with the CDF-t method. Two hydrological models, a lumped 47 

and conceptual model (GR5H), and a process-based distributed model (CREST), forced with 48 

historical and future climate simulations from the CPM and from the RCM, have been used. 49 

The CPM model confirms its ability to better reproduce extreme hourly rainfall compared to 50 

the RCM. This added value is propagated on flood simulation with a better reproduction of 51 

flood peaks. Future projections are consistent between the hydrological models, but differ 52 

between the two climate models. With the CNRM-ALADIN RCM, all floods are projected to 53 

increase, whereas a threshold effect is found for simulations driven by the CNRM-AROME 54 

CPM, where the magnitude of the largest floods is expected to increase while the moderate 55 

floods are expected to decrease. In addition, different flood event characteristics indicate that 56 

floods are expected to become flashier in a warmer climate, regardless of the model. This 57 

study is a first step for impact studies driven by CPMs over the Mediterranean. 58 

 59 

 60 
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1. Introduction 72 

 73 

Every year, the French Mediterranean region faces intense flash floods during the fall season 74 

causing important damages and casualties. Even if only small to medium catchments are 75 

concerned, flash floods are amongst the most destructive hazards in the French 76 

Mediterranean region (Boudou et al., 2016; Vinet et al., 2022). These hydrological events are 77 

triggered by Heavy Precipitation Events (HPEs) that can bring up to half of the annual rainfall 78 

in a few hours to days (Delrieu et al., 2005; Nuissier et al., 2011; Ricard et al., 2012). Initiated 79 

by the complex interaction between moisture fluxes from the Mediterranean Sea to the 80 

atmosphere, synoptic scale processes and topography, HPEs are complex and challenging to 81 

simulate and forecast with precision (Khodayar et al., 2018; Caillaud et al., 2021; Caumont et 82 

al., 2021). Due to their strong societal and economic impacts, being able to model HPEs and 83 

their resulting flash floods in current and future climate is an important societal concern.  84 

 85 

For several decades, faster computational capabilities and improved understanding of 86 

atmospheric processes have enhanced the confidence towards climate model simulations at 87 

global and regional scales (Rummukainen, 2010; Giorgi, 2019). Using a limited area, Regional 88 

Climate Models (RCMs) can reach spatial resolutions down to 10 km by dynamically 89 

downscaling global climate model (GCM) simulations (Giorgi and Gutowski, 2015). The 90 

increase of climate model spatial resolutions with time brought a more accurate description of 91 

the topography and an improved simulation of physical processes, improving the simulation 92 

of regional meteorological phenomena such as extreme rainfall events (Giorgi, 2019). Due to 93 

their higher spatial resolutions, RCMs allow the study of climate change impacts at the regional 94 

scale (Maurer et al., 2007; Teutschbein and Seibert, 2010). Namely, numerous studies have 95 

used RCM simulations as inputs for hydrological models to simulate discharge and floods in 96 

Europe (Kay et al., 2006; Dankers and Feyen, 2009; Köplin et al., 2014). Often necessary for 97 

hydrological simulations, bias correction methods can substantially affect the projection of 98 

floods in a warmer climate (Boé et al., 2007; Rojas et al., 2011; Teutschbein and Seibert, 99 

2012).  100 

 101 

RCM projections generally agree on the increase of extreme precipitation in the French 102 

Mediterranean region (Tramblay and Somot, 2018; Zittis et al., 2021), confirming the observed 103 

trends (Ribes et al., 2019). Despite the positive trends in rainfall extremes over the French 104 

Mediterranean region, the link of this signal on floods is not straightforward (Sharma et al., 105 

2018; Tramblay et al., 2019). Hydrological trends depend on multiple factors, such as 106 

catchment location, event severity, flood generating processes and soil moisture conditions 107 

(Blöschl et al., 2019; Wasko et al., 2023; Brunner et al., 2021). In the Mediterranean area, the 108 

reduction of the soil moisture prior to flood events could counterbalance rainfall extremes and 109 

possibly invert the sign of observed flood changes (Tramblay et al., 2023). In terms of future 110 

trends, the signal on floods magnitude and frequency thus remains uncertain in the French 111 

Mediterranean region. Using daily variables from an RCM ensemble, Alfieri et al. (2015) 112 

showed a future decrease in mean annual flows and an increase of flood frequency in this 113 

area. Thober et al. (2018) showed a decrease of high flows and flood magnitudes for different 114 

levels of future global warming. On the contrary, Lemaitre-Basset et al. (2021) reported a 115 

projected increase in flood severity in southern France. 116 

 117 
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Under a Mediterranean climate, precipitation is usually the main driver for runoff production. 118 

Floods are therefore mainly triggered by HPEs on small catchments (Amponsah et al., 2018). 119 

Despite RCMs’ good simulation of climatic conditions, biases remain in the representation of 120 

some regional and local phenomena, such as HPEs (Khodayar et al., 2016; Caillaud et al., 121 

2021). Indeed, with resolutions coarser than 10 km, the simulation of convective events with 122 

RCMs requires the use of deep convection parameterization schemes, leading to an 123 

underestimation of rainfall extremes (Prein et al., 2016; Ban et al., 2021). This poor 124 

representation of sub-daily extreme rainfall by RCMs could question the reliability of the flood 125 

impact studies over small Mediterranean catchments, perhaps explaining some contradictory 126 

results identified in the literature.  127 

 128 

During the last decade, a new generation of RCMs has emerged (Kendon 2010). Convection-129 

permitting regional climate models (CPMs) have a resolution finer than 4 km. Their resolution 130 

is sufficiently fine to allow an explicit representation of deep convective processes (Lucas-131 

Picher et al., 2021) and thus to get rid of deep convection parameterization schemes, which 132 

are necessary in RCMs. Most of the studies using CPMs show a clear added value compared 133 

to RCMs in the representation of local-scale phenomena such as convective cells and 134 

localized intense precipitation (Prein et al., 2015; Coppola et al., 2020; Caillaud et al., 2021; 135 

Ban et al., 2021; Caldas-Alvarez et al., 2022). In the context of the COordinated Regional 136 

climate Downscaling EXperiment Flagship Pilot Study (CORDEX-FPS) convection initiative, 137 

Ban et al. (2021) carried out a multimodel evaluation of CPMs over a central European domain. 138 

This study confirmed the added value of different CPMs in the simulation of hourly extreme 139 

precipitation. 140 

 141 

Even if CPMs are a promising tool to study hydrological impacts, only a few of them have yet 142 

been used for this purpose. Results from these preliminary studies do not indicate 143 

improvements in discharge simulation and flood modeling using CPMs. Kay et al. (2015) used 144 

a CPM output to feed a hydrological model over river basins in Great Britain. Their results 145 

indicate no added value using this CPM on discharge modeling, with strong geographical 146 

differences. The same conclusion was found by Reszler et al. (2018) using CCLM and WRF 147 

CPM simulations as input for the KAMPUS distributed hydrological model over a continental 148 

and mountainous domain (Eastern Alps). Mendoza et al. (2016) compared the impact of 149 

climate model spatial resolution in Colorado, showing the ability of CPMs to reproduce 150 

observed annual cycles especially in mountainous catchments. In an idealized modeling chain 151 

with different climate simulation resolution, Quintero et al.(2021), found that a 4-km grid 152 

spacing CPM is the best compromise between computational costs and performance of 153 

hydrological modeling. In terms of future projections, and using CPMs as an input of a 154 

distributed hydrological model, floods are projected to become more severe, more frequent, 155 

more unpredictable and flashier in the USA (Li et al., 2022a, b). In a recent study, Kay (2022) 156 

used an ensemble of CPMs to feed a gridded hydrological model, showing a better 157 

performance and higher future flow changes of CPMs compared to RCMs. Using a modeling 158 

chain driven by a CPM over a tropical area in Africa, Ascott et al. (2023) indicate no significant 159 

trend in floods in future projections. Even though the aforementioned studies have pioneered 160 

the use of CPMs with hydrological models, they are limited to only one hydrological model, 161 

ignoring uncertainty induced by hydrological model discrepancies. To our knowledge, no 162 

paper has studied Mediterranean floods using a CPM. 163 

 164 
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In this study, we would like to assess the added value of a CPM regarding the evolution of 165 

floods over a Mediterranean catchment prone to intense floods. For this, we perform an 166 

analysis of simulated floods magnitudes and characteristics under a historical scenario and 167 

under the RCP 8.5 emission scenario. Two climate datasets, a CPM (CNRM-AROME) and its 168 

driving RCM (CNRM-ALADIN), are used as inputs to one lumped, conceptual hydrological 169 

model (GR5H) and one distributed, process-based hydrological model (CREST used in EF5). 170 

The main aims of this paper are to: 171 

● Evaluate the added value of the CPM on extreme rainfall at the scale of a small 172 

Mediterranean basin  173 

● Evaluate the capacity of a CPM to reproduce Mediterranean floods using two 174 

hydrological models 175 

● Assess future changes in floods distributions and characteristics between the two 176 

models and two climate simulations 177 

Section 2 describes the area of interest, the data and the different climate and hydrologic 178 

models. The methodology is detailed in Sect. 3. The evaluation of the climate and hydrological 179 

models and the projection of floods are presented and discussed in Sect. 4.  180 

  181 

2. Study area and data 182 

 183 

2.1. Catchment: Gardon d’Anduze 184 

 185 

The study is performed over a 543 km² Mediterranean catchment, the Gardon d’Anduze, 186 

located in the Cévennes region, on the southern slopes of the Massif Central Mountain range. 187 

The Gardon d’Anduze has a complex topography ranging from 130 m to 1200 m a.s.l. 188 

Consequently, it is a rather natural, forested and lightly urbanized. Indeed, most of its surface 189 

is covered by typical Mediterranean vegetation. The soils are relatively thin, from 10 cm at the 190 

top of the hillslopes to 100 cm close to the river bed (Vannier et al., 2014). It is considered as 191 

a highly reactive Mediterranean catchment, known for experiencing some of the most 192 

destructive flash floods in France (Delrieu et al., 2005; Toukourou et al., 2011). The Gardon 193 

d’Anduze catchment has been extensively studied due to its location of particular interest in 194 

hydrology, especially for flash flood modeling and forecasting (Alfieri et al., 2011; Roux et al., 195 

2011; Moussa, 2010). Figure 1 displays the location of Gardon d’Anduze in France (a), and 196 

orography as shown by a 80-m resolution DEM (b), and by the RCM and CPM (c and d). 197 
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 198 

Figure 1: Location of Gardon d’Anduze catchment (in red) over France (a), orography 199 

of this catchment represented by a 80-m DEM (b), by the 12-km CNRM-ALADIN RCM(c) 200 

and the 2.5-km CNRM-AROME CPM (d) 201 

 202 

2.2. Climate models 203 

In this study, we use climate simulations from a CPM and its forcing RCM, both developed 204 

and released at the Centre National de Recherches Météorologiques (CNRM), in Toulouse, 205 

France. Information about these two climate models is summarized in Table 1. 206 

 207 

CNRM-ALADIN is a 12-km grid cell RCM that has been run over the continental EUR-11 208 

domain through the EURO-CORDEX initiative. Retrospective simulations are driven by the 209 

ERA-Interim global reanalysis dataset (Dee et al., 2011), while historical and future scenarios 210 

are forced by the CNRM-CM5 global model (Voldoire et al., 2013). This version is derived from 211 

the development of the NWP model ALADIN, thanks to the ACCORD research centers 212 

consortium. CNRM-ALADIN has been extensively used in the CORDEX framework over 213 

Europe, Mediterranean, North America and Africa. For more details about the parametrization 214 

schemes and configurations of the last version of ALADIN, see Nabat et al., 2020 and Lucas-215 

Picher et al., 2023.  216 
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CNRM-AROME is a CPM, which is adapted from the cycle 41 of the NWP AROME formerly 217 

operating for numerical weather prediction. Simulations used in this study are produced over 218 

the NW domain, covering France, the UK, North of Spain and most of Germany with a 2.5-km 219 

mesh. Some papers have already evaluated this model, under a former release (Fumière et 220 

al., 2020), a different domain and forcing RCM version (Caillaud et al., 2021), or the same 221 

version and domain used in this study (Lucas-Picher et al., 2023). All these evaluations have 222 

established the added value of CNRM-AROME in the reproduction of extreme rainfall and 223 

HPEs compared to CNRM-ALADIN over the domains. To our knowledge, no published study 224 

has used CNRM-AROME projections for climate change assessment.  225 

In this paper, ALADIN and AROME refer to the version of CNRM-ALADIN and CNRM-AROME 226 

described above, respectively. 227 

 228 

 229 

 CNRM-ALADIN CNRM-AROME 

Version 6.3 41t1 

Resolution 12 km 2.5 km 

Retrospective simulation 
(evaluation) 

1979-2018 2000-2018 

Historical simulation 1951-2005 1986-2005 

Future simulation (RCP 8.5) 2006-2100 2080-2099 

Deep convection parameterized explicit 

Reference papers Nabat et al., 2020 Lucas-Picher et al., 2023 

Table 1 : Information about the two climate models and their associated simulations 230 

used in this study 231 

 232 

2.3. Observations 233 

 234 

In this study, we compare the hourly simulated data with a high-resolution observed 235 

precipitation dataset so-called COMEPHORE. COMEPHORE is an hourly 1-km resolution 236 

gridded product covering the Metropolitan French during the 1997-2019 period. 237 

COMEPHORE was built by merging weather station rainfall measurements and different radar 238 

sources (Laurantin et al., 2012; Caillaud et al., 2021). The dataset used approximately 3000 239 

daily rain gauges and 1200 hourly rain gauges. The number of radars have more than doubled 240 

during the first decade of data. In 2019, COMEPHORE was built using data from 29 radars 241 

comprising the French radar network (ARAMIS), in addition to foreign radars such as those 242 

from the Swiss network and one on Jersey Island. Even though the quality of the dataset is 243 

not temporally and spatially homogeneous, COMEPHORE is still considered as the best 244 

national reference for studying hourly rainfall at high spatial and temporal resolutions. 245 

Furthermore, the Gardon d’Anduze river catchment is located in a region of high rain gauges 246 

and radar density, raising the confidence in this dataset for a benchmark in this study (Caillaud 247 

et al., 2021). Temperature is the main variable to compute potential evapotranspiration (PET). 248 
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As a reference, we extracted 3-h temperature measurements from 6 weather stations in the 249 

basin. Temperature was then linearly downscaled to the hourly time step and interpolated over 250 

the catchment using an inverse distance weighting method.  251 

 252 

Numerous methods exist to compute PET from climatic variables for hydrological modeling 253 

perspectives (Oudin et al., 2005). Here, we compute PET using the Hargreaves-Samani (HS) 254 

method (Hargreaves and Samani, 1982). We chose a reliable, widespread applied method 255 

that requires the minimum amount of climate variables at the daily time step. Daily PET is then 256 

disaggregated to the hourly time step using a standard distribution curve as done in Lobligeois, 257 

2014. We applied the same methodology for simulated temperature.  258 

 259 

2.4. Hydrological models 260 

 261 

Two hydrological models with different physical concepts were used in this framework. This 262 

choice was made to consider the potential uncertainty related to hydrological modeling that 263 

can affect hydrological projections (see e.g. Lemaitre-Basset et al., 2021, that discusses this 264 

issue for the neighboring Hérault catchment).   265 

 266 

The GR5H model is a lumped, conceptual rainfall-runoff model that runs hourly (Ficchì et al., 267 

2019). Based on several conceptual reservoirs, such as a soil-moisture accounting reservoir, 268 

and a unit hydrograph, this model transforms catchment-aggregated hourly precipitation and 269 

potential evapotranspiration data into simulated hourly discharge. The GR5H model takes into 270 

account the interception of rainfall by vegetation, which was proven important for flood events 271 

(Ficchì et al., 2019). The GR5H model parameters were calibrated against observed discharge 272 

using the NSE objective function. This model or close versions belonging to the so-called GR 273 

family of hydrological models have been used both for flood simulation (Ficchì et al., 2019; 274 

Astagneau et al., 2021), and climate change applications (Chauveau et al., 2013; Lemaitre-275 

Basset et al., 2021). The GR5H model was run using the open source airGR R package (Coron 276 

et al., 2017, 2020), which also provides the parameter calibration algorithm that was used. 277 

 278 

The Ensemble Framework For Flash Flood Forecasting (EF5) is a software for distributed 279 

water balance modeling (Flamig et al., 2020), including different schemes for runoff production 280 

and routing. As part of EF5, we used the Coupled Routing and Excess STorage (CREST) 281 

model and the kinematic wave routing scheme, at the hourly time step. CREST is a fully 282 

distributed model, process-based hydrological model. It can be defined as a hybrid between 283 

a conceptual and a physics-based model (Wang et al., 2011). All hydrological processes, such 284 

as runoff production, evapotranspiration and sub-grid cell routing are computed at each grid 285 

cell. CREST is composed of two excess storage reservoirs, one for interception by the 286 

vegetation canopy and one representing a layer of soil. For each cell, runoff and infiltration are 287 

separated using a variable infiltration curve. Therefore, this model takes into account the two 288 

main runoff production mechanisms: saturation-excess and infiltration-excess. The 289 

subsurface routing is done with a linear reservoir model. Total runoff, composed of surface 290 

and sub-surface runoff water, is then routed to the outlet following the orography provided by 291 

a digital elevation model (DEM) with the kinematic wave routing scheme. Actual 292 

evapotranspiration is determined in the model from PET input and the water content of the 293 

cell. The CREST model is composed of 13 parameters: 6 for runoff production and 7 for the 294 
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routing. Here we will refer to this adaptation of CREST in EF5 simply as CREST for 295 

succinctness. The DiffeRential Evolution Adaptive Metropolis (DREAM) scheme is used for 296 

automatic calibration to estimate the best parameter set (Vrugt et al., 2009). A complete 297 

description of parameters is provided in Flamig et al., 2020. CREST is a model initially 298 

developed to respond to the need of forecasting floods at the global scale (Wang et al., 2011), 299 

but is perfectly suitable to simulate flash floods (Flamig et al., 2020) through EF5. Indeed, 300 

CREST has been used to study extreme hydrological events; for example to reproduce floods 301 

from a major hurricane event (Li et al., 2021) or floods and flash floods in a warmer future (Li 302 

et al., 2022b, a). In this study, topographic data from the version 1.1 of HydroSHED database 303 

is used for CREST. Resolution of the DEM is 15 arc-sec, hence for this latitude around 300 m 304 

in longitude by 450 m in latitude. Drainage direction maps and flow accumulation maps are 305 

then produced using the QGIS software and packages.  306 

 307 

The CREST and GR5H hydrological models have been calibrated using the hourly observed 308 

discharge from 2002-2018, using the COMEPHORE hourly rainfall dataset and PET computed 309 

from observed air temperatures. For GR5H, all the model parameters have been calibrated. 310 

For CREST, most parameters have been fixed (Li et al., 2022b) and the calibration has been 311 

performed on a few sensitive parameters. The Nash and Sutcliffe Efficiency (NSE) criteria is 312 

used as an objective function for the calibration process. We initialized the models during a 313 

one-year warmup period before the starting date. Both hydrological models have been 314 

evaluated using the following metrics (see Sect. 4.2) over the 2002-2018 period:   315 

 316 

● Nash and Sutcliffe Efficiency (Nash and Sutcliffe, 1970) 317 

● KGE (Gupta et al., 2009) 318 

● Bias on mean flows 319 

● Bias on quantile 99.9  320 

● Bias on Peak Over Thresholds (POT) distributions: we compared the mean of 321 

simulated POT distribution to the mean of observed POT distribution. 322 

 323 

The same period (2002-2018) is kept to run the hydrological models driven with retrospective 324 

climate simulations. For the scenarios datasets, using a 1-year warmup period, we computed 325 

simulations over two epochs of 19 years for historical (1987-2005) and future (2081-2099) 326 

periods.  327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 
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3. Methods 340 

 341 

3.1. Bias correction 342 

 343 

Climate simulations, and notably precipitation, often show significant biases that prevent their 344 

direct use in impact studies using hydrological models. Indeed, hydrological models are 345 

calibrated over climatic conditions that can differ strongly from the raw historical climate 346 

simulations. The use of bias correction methods on climate simulations is an open debate 347 

(Addor and Seibert, 2014; Huang et al., 2014; Maraun, 2016). However, correction of biased 348 

climate simulations is widely used for hydrological impact studies and future projections 349 

(Reszler et al., 2018; Giorgi, 2019; Lucas-Picher et al., 2021). 350 

 351 

In order to correct simulated climate data biases, we used an univariate statistical bias 352 

correction method. CDF-t is a statistical bias correction method specifically developed for 353 

correcting biases of climate variables (Michelangeli et al., 2009). The basis of this method is 354 

an extension of a quantile mapping method that allows a change of distribution statistics for 355 

corrected variables. Consequently, CDF-t is particularly appropriate to correct future climate 356 

datasets in a non-stationary climate (Michelangeli et al., 2009; Vrac et al., 2012) and it is 357 

largely used to correct future climate projections for the sake of climate change impact studies. 358 

In this study, we applied the CDF-t correction on hourly precipitation and temperature 359 

variables. Due to the distinct seasonality of precipitation, and a strong spatial variability of 360 

precipitation in this catchment, we corrected simulated datasets for each calendar month and 361 

over each grid cell separately. To take into account differences in the ratio of wet and dry 362 

hours, the Singularity Stochastic Removal (SSR) preprocessing method is applied for 363 

precipitation simulations (Vrac et al., 2016). Historical simulations are corrected against the 364 

corresponding observed period (2000-2018). With the common period of data between 365 

observations and historical AROME simulations being relatively short (8 years), we chose to 366 

correct observations and the historical simulation over two asynchronous periods of same 367 

length, respectively 2000-2019 and 1986-2005. This correction is then applied over the end of 368 

century RCP 8.5 projections (2080-2099). All these operations are performed through the R 369 

package SBCK (Robin, 2022). For the GR5H model, corrected climate outputs are then 370 

averaged over the Gardon d’Anduze catchment. 371 

3.2. POT extraction and declustering 372 

 373 

This study focuses on floods. To extract floods from discharge time series, two approaches 374 

are widely adopted: the maximum annual discharge flood (AMF) and a Peak Over Threshold 375 

(POT) extraction (Lang et al., 1999). The POT selection method consists of the extraction of 376 

all flood peaks exceeding a threshold. Contrary to the AMF method, the POT method 377 

preserves the hydrological information especially in Mediterranean catchments where several 378 

flash floods can occur every year. Hence, we selected this method for flood extraction in this 379 

paper. The POT method requires temporal independence between flood peaks. To ensure 380 

this assumption, a declustering algorithm has been developed and applied to evaluate 381 

temporal dependencies between POTs, adapted from Lang et al. (1999). The declustering 382 

applied herein considers that two floods are independent if there is a minimum duration of 96 383 
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hours between the two events, and if the discharge between different events must drop below 384 

75 % of the minimum value of the flood peaks.  385 

 386 

Cunnane (1973) found that the POT method minimizes the sampling variance for a threshold 387 

producing on average 1.65 flood peaks per year, compared to the AMF. To get a sufficient 388 

sample of simulated POT (in particular for ALADIN), we fixed here the discharge threshold to 389 

have an average of two floods per year for the observed discharge (corresponding to a 390 

threshold equal to 265 m³.s⁻¹), after declustering. 391 

 392 

3.3. Flood characteristics 393 

For each event, several flood characteristics and their associated rainfall events are also 394 

analyzed. These metrics aim to understand future changes in flood mechanisms as projected 395 

by climate simulations. For instance, changes in flood peak baseflow can give information on 396 

change in antecedent soil moisture. The Lag-time and flashiness indexes describe the 397 

intensity and speed of the rise of the river flow, a signature of potential catastrophic impacts 398 

(flash flood). At the same time, characteristics of the rainfall events (duration, intensity, 399 

maximum) in tandem with the flood characteristics help elucidate the driving processes and 400 

causes of future changes in the basin’s hydrometeorology. Rainfall events associated with 401 

each POT (Sect. 3.2) are defined by a sequence of hourly rainfall prior to the flood peak (i) 402 

interrupted by no more than 2 dry hours and (ii) yielding at least 30 mm to trigger the 403 

hydrological event. These two conditions have been tested for different values with observed 404 

datasets, and have shown very little sensitivity to defining the flood characteristics. The rainfall 405 

thresholds are related to our knowledge of the river basin dynamics and hydrological expertise. 406 

Table 1 summarizes metrics names, meaning and computation details. 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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 430 

 431 

 432 

Metric 
name 

Definition Equation 

𝑛𝑃 Duration of rainfall event (h)  

𝑃𝑚𝑎𝑥 Maximum hourly precipitation of rainfall 
events associated with the flood (mm) 

𝑃𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑃𝑖) 
 
𝑖 are temporal indices of rainfall 
event  

𝑃𝑡𝑜𝑡 Rainfall event total amount (mm) 

𝑃𝑡𝑜𝑡 = ∑

𝑛𝑃

1

𝑃𝑖 

𝐵𝑃𝑂𝑇 Baseflow value (m³.s⁻¹) at the flood peak 
timestep. Baseflow timeseries are 
extracted from the R package 
hydroEvents with default filter values 
(Wasko and Guo, 2022) 

 

𝑅𝑃𝑂𝑇  Baseflow contribution of the POT (%)  
𝑅𝑃𝑂𝑇  =  

𝐵𝑃𝑂𝑇

𝑄𝑃𝑂𝑇
 

𝑛𝑄 Duration of flood event (h) 𝑛𝑄 = 𝑛 + 1 

with 𝑛 number of timesteps 
exceeding the threshold 

𝐿𝑇 Lag time (h), reactivity (concentration 
time) of the catchment for the given hydro-
meteorological event. 
 
Time difference between the rainfall event 
centroid and the POT. To remove artifacts, 
and for consistency issues, a temporal 
window of 24 h prior to the POT was 
chosen. 

𝑗𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
∑𝑞

𝑞−24 𝑗𝑃𝑗

∑𝑞
𝑞−24 𝑃𝑗

 

 
with  
𝑗 : indices of flood event 

𝑞 =  𝑗𝑃𝑂𝑇 the index of POT 
 

𝐿𝑇 = 𝑞 − 𝑗𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑   

𝐹𝐼 Flashiness Index (-): Flashiness of flood 
determined by a combination of flood 
reactivity and magnitude, proxy of flood 
severity. Adapted from Li et al., 2022. 

𝐹𝐼  =
𝑄𝑃𝑂𝑇 − 𝐵𝑃𝑂𝑇

𝐿𝑇
 

Table 1 : Flood characteristics definition and details 433 

 434 

  435 
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4. Results and discussion 436 

4.1. Added value of CPM at the catchment scale 437 

 438 

We first analyze the climate datasets aggregated at the scale of Gardon d’Anduze catchment. 439 

Figure 2 shows the annual cycle for daily minimum (Tmin) and maximum (Tmax) temperature 440 

and hourly precipitation, before (raw) and after bias correction (BC-CDFT). 441 

AROME and ALADIN in retrospective mode (evaluation) show correct annual cycles despite 442 

an overestimation of summer temperature both for Tmin and Tmax. Results in this area are in 443 

line with the recent evaluation of the ALADIN and AROME climate models (Lucas-Picher et 444 

al., 2023). The ALADIN RCM is generally colder than AROME, which can be explained by an 445 

effect of resolution. A strong cold bias (3-5 °C) is visible over all seasons for both models in 446 

historical scenarios over the period 1986-2005. This cannot be explained by climate variability 447 

or by climate change signals between the decades 1986-2005 and 2000-2018. This is a known 448 

cold bias of climate models driven by the GCM CNRM-CM5 (Vautard et al., 2021). Annual 449 

cycles for Tmin and Tmax for future projections (RCP 8.5) are similar to the evaluation period, 450 

i.e climate change signals for temperature are almost of the same magnitude as the cold bias. 451 

As expected, this cold bias disappears after bias correction for both AROME and ALADIN 452 

historical scenarios. The bias-corrected temperatures under the RCP 8.5 scenario strongly 453 

increase for all seasons. However, the strongest signal is seen for the summer months. 454 

 455 

Annual cycles of precipitation are well reproduced for ALADIN and AROME for the evaluation 456 

period. Both models are a bit too wet in spring and too dry in summer, but the wet season 457 

(October to December) on simulations is clearly distinguishable and identical to COMEPHORE 458 

dataset (observations). The wet bias in spring can deeply affect soil moisture state in the 459 

hydrological models and therefore probably lead to a change in the behavior of the first floods 460 

occurring during the autumn months.  The two climate models are able to reproduce the 461 

precipitation seasonality. There is no evidence of added value from the CPM on the simulation 462 

of the annual cycle of precipitation on this catchment. Results are similar for AROME and 463 

ALADIN for historical projections: spring and summer seasons are too wet. This causes a 464 

weaker annual cycle of precipitation. The wet fall season, however, is correctly reproduced, 465 

but with a too early start and plateau. The CDF-t bias correction method is able to correct the 466 

annual cycle of precipitation. The dry season is therefore consistent with the reference. In 467 

terms of intensity, ALADIN corrected shows an increase in intensity of the wet season peak 468 

(> 0.4 mm.h-1). We do not find this signal with AROME after correction. There is a dry signal 469 

for AROME corrected for the summer months. Results show no signal of wet season 470 

lengthening between the historical period and the future RCP 8.5 scenario. 471 

 472 
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 473 
 474 

Figure 2: Annual cycle of daily-aggregated minimum and maximum 2m- temperature 475 

(Tmin and Tmax) and hourly precipitation for raw (left) and bias-corrected (right) climate 476 

datasets. A 30-day rolling mean has been applied in order to smooth the high frequency 477 

natural variability. 478 

 479 
 480 

 481 

 482 
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In terms of precipitation distribution, for the evaluation (retrospective) simulations, AROME 483 

performs better than ALADIN, especially for the precipitation extremes (Figure 3). The most 484 

extreme events (> quantile 99.9) remain underestimated for AROME. (Fumière et al., 2019; 485 

Caillaud et al., 2021; Lucas-Picher et al., 2023) have already shown the added value of the 486 

AROME CPM compared to its driving RCM, ALADIN, for modeling extreme hourly 487 

precipitation. This result confirms these past studies at the scale of a small catchment in the 488 

Cévennes region where AROME shows a clear added value (Caillaud et al., 2021).  489 

 490 

The future ALADIN projected rainfall is lower than that of AROME, for the whole distribution. 491 

Extreme projected precipitation for ALADIN is lower than for the historical AROME data, 492 

partially due to the persistent bias. However, the projected hourly precipitation shows an 493 

increase of extreme hourly rainfall (> 95th percentile) under a warmer climate (RCP 8.5 494 

projection) for both models. This signal is stronger for the most extreme hourly rainfall (>99.9th 495 

percentile) and for the AROME simulation. This local-scale result is in agreement with the 496 

broader multi-model ensemble study of Pichelli et al. (2021), which compared an ensemble of 497 

CPMs and their driving RCMs over 10-year periods (historical and future). They found a 498 

consistent signal of hourly rainfall extremes over southern France between CPMs and RCMs 499 

for the wet season (fall). For the dry season, a slight decrease of the 99.9th percentile of hourly 500 

precipitation of CPMs is shown, consistent with the annual cycle projection of Figure 2. The 501 

large increase of the hourly extreme simulated precipitation is maintained after the bias 502 

correction. The signal of the projected precipitation, after bias correction, is largely positive for 503 

all probabilities exceeding 95th percentiles for both models. While ALADIN shows a stronger 504 

increase for the 95th and 99th percentiles than those of AROME, AROME produces the most 505 

positive trend for the most extreme hourly corrected rainfall (see Table 2). Indeed, the most 506 

extreme projected hourly rainfall is therefore expected to reach hourly rainfalls that have never 507 

been observed at the catchment scale (> 40 mm.h⁻¹).  508 

 509 

 510 

Percentile AROME  ALADIN 

95th +4.1 +16.6 

99th +17.5 +36.5 

99.9th +52.4 +28 

 511 

Table 2: Changes of extreme hourly corrected precipitation (%) under RCP 8.5 scenario 512 

relative to historical simulation for AROME and ALADIN. 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 
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 524 

 525 

 526 

Figure 3: Distribution of wet hourly rainfall (> 0.1mm.h⁻¹) for raw (left) and bias-527 

corrected (right) precipitation datasets. The upper panels show the retrospective 528 

simulations (2000-2018). The lower panels depict the historical (1986-2005) and future 529 

(2080-2099) simulations under the RCP 8.5 scenario. COMEPHORE observed hourly 530 

rainfall is appended to all panels (2000-2018). Probabilities under the abscissa axis are 531 

shown under a Gumbel transformation. 532 

 533 

 534 

 535 
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4.2. Hydrological modeling to reproduce floods events 536 

 537 

Table 3 presents a summary of the performance metrics of the hydrological models (GR5H 538 

and CREST) calculated over the evaluation period. GR5H reproduces well the observed 539 

discharge with KGE and NSE scores higher than 0.75 (Table 1). High flows and mean flows 540 

are correctly simulated even if they are slightly underestimated. The CREST performance is 541 

lower for all the metrics. It shows an acceptable global efficiency and an overestimation of 542 

both mean flows and high flows. Both hydrological models underestimate flood peaks. 543 

 544 

 NSE KGE Bias on 
Mean flows 
(%) 

Bias on 
Q99.9 (%) 

Bias on POT 
(%) 

GR5H 0.76 0.85 -2.28 -3.7 -9.21 

CREST 0.54 0.68 8.49 19.9 -19.6 

 545 

Table 3: Evaluation of hydrological models simulations against observed discharge 546 

(2002-2018). Results for general efficiency scores (NSE: Nash–Sutcliffe efficiency, KGE:  547 

Kling-Gupta efficiency) and relative biases on mean flows, high flows (quantile 99.9) 548 

and flood peaks (observed flood peak over threshold). 549 

 550 

Figure 4 shows the annual cycle of discharge at the outlet of the Gardon d’Anduze catchment. 551 

Both models are able to reproduce the annual cycle, in particular the high-flow season caused 552 

by HPEs and floods events. As seen on Table 3, CREST tends to produce a more excessive 553 

discharge response to rainfall than GR5H. GR5H tends to overestimate low flows for summer 554 

months, which is however not the focus of the present work. One should keep in mind that the 555 

two hydrological models have been calibrated using a different strategy, all parameters of 556 

GR5H have been calibrated while most of CREST parameters used a priori estimates, since 557 

it is a common strategy for fully distributed physically–based models (Clark et al., 2017). 558 

 559 

These results must be moderated looking at Figure 5, which shows the cumulative distribution 560 

of the observed discharge along with the GR5H and CREST simulated discharge for the 561 

evaluation period. The study indeed focuses on the most intense floods events in this 562 

catchment, i.e. flood peak above 265 m³.s⁻¹, leading to two floods per year on average. Biases 563 

in CREST simulations (Table 3, Figure 4) are not necessarily reflected in the flood distribution 564 

since both models manage to reproduce the observed flood distribution on this small 565 

catchment. We can see a slight underestimation of the most intense flood by both hydrological 566 

models. The most severe flood corresponds to the major flood event of September 2002, one 567 

of the most damaging flash floods recorded in France (Delrieu et al., 2005; Vinet, 2008). Even 568 

if the return period of this observed flood exceeds 50 years, this outlier value of the distribution 569 

of observed POT has to be carefully interpreted. The peak discharge value of a flood of this 570 

magnitude is likely inaccurate because of large uncertainties related to the measurement of 571 

the water level, the extrapolation from the rating curve, and possible modifications of river bed 572 

topography and flow dynamics (Neppel et al., 2010). However, in terms of flood frequency, 573 

the number of POTs differs between the two models. While CREST simulates in average 3.1 574 

floods per year, GR5H is closer to observation with in average 1.5 floods per year.  575 
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 576 

 577 
 578 

Figure 4: Annual cycle of discharge for observation, GR5H and CREST evaluation 579 

simulations over the 2002-2018 period. Multiyear regime of 8-day averaged flows at 580 

Anduze (Gardon d’Anduze catchment)   581 

 582 

 583 

 584 

 585 

 586 
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 587 
 588 

Figure 5: Cumulative Distribution Functions (CDFs) of observed and simulated flood 589 

peaks over the evaluation period (2002-2018). Both models have been calibrated and 590 

run with observed precipitation (COMEPHORE) and PET derived from the observed 591 

temperature. The threshold is a fixed discharge value giving two floods per year from 592 

the observed discharge (265 m³.s⁻¹) 593 

 594 

4.3. Reproducing floods with the climate datasets 595 

 596 

The flood distributions of the AROME- and ALADIN-driven simulations with GR5H and CREST 597 

are presented on Figure 6. The AROME and ALADIN datasets are retrospective simulations 598 

(evaluation) with (CDFT) and without bias correction. We used the same threshold as in Figure 599 

5, the discharge value (265 m3.s-1) leading to two observed floods per year after the 600 

declustering. First of all, when forced by raw climate simulations, POT distributions are largely 601 

underestimated by CREST and GR5H. The hydrological models forced with the AROME CPM 602 

reproduce floods intensity better than when forced with ALADIN. This can be observed by the 603 

shape of the distributions, which is almost flat for ALADIN. The ALADIN-driven flood 604 

distributions fail to reproduce the observed flood frequency with 0.4 and 0.9 floods per year 605 

for GR5H and CREST respectively, compared to AROME who simulates an acceptable 606 

number of floods (1.2 for GR5H, and 2.3 for CREST). Consequently, AROME seems more 607 
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reliable than ALADIN in simulating floods with both hydrological models. The results shown in 608 

Figure 6 confirm CREST over-reactivity with a higher number of POTs simulated than for 609 

GR5H. This model behavior does not impact the flood intensity. Conversely, discharges in the 610 

upper half of the flood peak distribution (cumulative frequency > 0.5) are slightly lower for 611 

CREST than for GR5H.  612 

 613 

After the CDF-t bias correction, all POT distributions are closer to the hydrological simulation 614 

forced by the observed data (green curve). All simulated datasets are compared here with the 615 

simulated discharge driven by the observed precipitation (green curve). The ALADIN-driven 616 

hydrological simulation shows a slightly better POT distribution than the AROME-driven one 617 

for both models, even if the most intense flood event (September 2002) is better simulated 618 

with AROME. Bias correction yields an improvement in flood frequency modeling for GR5H 619 

with 1.8 floods per year when using the AROME dataset and 1.9 for the ALADIN dataset. 620 

However, even after bias-correction, the flood frequency with CREST is higher than the 621 

COMEPHORE driven simulation (2.9 and 3.3 floods per year for AROME and ALADIN 622 

respectively). To summarize, the added value found for the CPM compared to the RCM in 623 

extreme precipitation in previous sections seems to be transmitted for flash flood simulation. 624 

Bias correction reduces the difference between climate models, with no remnant bias on POT 625 

distribution. The choice of the hydrological model therefore does not seem to impact the 626 

results between the forcing climate datasets. 627 
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 628 

 629 

Figure 6: POT CDF for GR5H (upper panel) and CREST (lower panel) forced by the 630 

observed and retrospective climate simulations (2001-2018). POT from raw climate 631 

datasets is on the left and bias-corrected climate datasets on the right. The threshold 632 

is the same as in Figure 5. 633 

 634 

 635 

 636 

 637 

 638 
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4.4. Climate change (Flood intensity and frequency) 639 

 640 

This section aims to determine how the flood distribution will evolve in the future for this 641 

Mediterranean catchment and whether this evolution is impacted by the different hydrological 642 

models and climate models used. Figure 7 is the same as Figure 6, with flood distributions 643 

coming only from the hydrological models forced with the AROME and ALADIN climate 644 

simulations under the historical and the future RCP 8.5 scenario. In the first place, the two 645 

hydrological models show flood peaks discharge weaker for ALADIN than for AROME. CREST 646 

simulates higher floods for historical and future projections than GR5H.   The shape of the 647 

distribution of POT simulated with CREST is less flat than for GR5H distribution, reflecting a 648 

behavior similar to a Pareto distribution, hence a tail of the distribution associated with more 649 

extreme i.e. rare events. The number of floods is higher for the CREST-driven hydrological 650 

simulations than GR5H ones. These simulations can reach a flood frequency exceeding 4 651 

floods per year on historical AROME- and ALADIN-driven discharge simulations.  652 

 653 

Flood distributions from the bias-corrected historical and future projections show a good 654 

consistency between hydrological models, but higher differences among the climate 655 

simulations. Figure 7 highlights a major difference between the AROME CPM and its driving 656 

RCM, ALADIN. While the ALADIN-driven simulations indicate for both hydrological models a 657 

generalized increase of magnitude of floods, the AROME-driven simulations show a different 658 

signal depending on the probability of occurrence. Moderate floods are projected to be weaker 659 

in a warmer future when using AROME, but there is a positive increase for the most extreme 660 

floods. The threshold related to this change of signal seems to be located between 0.7 and 661 

0.75 for both hydrological models, i.e., 25 % to 30 % of the most extreme floods are projected 662 

to be stronger in a future climate. Negative changes for CREST are less pronounced than for 663 

GR5H, but on the contrary, positive changes above this threshold are stronger, especially for 664 

the most extreme projected flood events.  665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 
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 683 

 684 

Figure 7: POT distributions for GR5H (upper panel) and CREST (lower panel) forced by 685 

historical and future climate simulations. POTs from raw climate datasets are on the 686 

left and those from bias-corrected climate datasets on the right. The threshold is the 687 

same as for Figure 5. 688 

 689 

 690 

 691 

 692 

 693 

 694 
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The different changes in moderate and large floods could be explained by a decrease in future 695 

soil moisture, which can compensate for the increase in heavy precipitation for small to 696 

moderate floods. This result is in agreement with the studies of Brunner et al. (2021) and 697 

Wasko et al. (2023). This is consistent as well with Tramblay et al. (2023) and Bertola et al. 698 

(2021) who showed the importance of antecedent soil moisture in modulating changes of  699 

floods. This threshold behavior is not present for the ALADIN-driven flood simulations. Indeed, 700 

the signal for the ALADIN flood projections is positive for almost all the flood distribution, 701 

except for the weakest floods where no clear signal is projected. Both bias-corrected ALADIN 702 

and AROME flood projection distributions show a strong increasing signal for the distribution 703 

tail. ALADIN-driven simulated floods in a future climate reach higher peak values than AROME 704 

when simulated by the GR5H model. For CREST, the distribution tail of future floods for 705 

AROME and ALADIN are of the same order of magnitude.  706 

 707 

The different behavior between the AROME- and ALADIN-driven flood simulations questions 708 

the reliability of low-resolution RCMs for hydrological impact studies related to extreme events. 709 

The poor representation of topography along with the parametrization of deep convection for 710 

RCMs lead to strong biases on HPE’s intensity and temporal distribution. Indeed, extreme 711 

rainfall events for ALADIN are generally composed of long-lasting moderate hourly rainfall 712 

rather than a more realistic convective precipitation peak. The bias correction method works 713 

on each individual hourly time step, but it does not influence the temporal distribution of rainfall 714 

events (i.e. hyetograph shape), leading to an over-correction of the HPEs and probably to 715 

excessive hydrological reactions (not shown here). This strong bias-correction probably 716 

prevents ALADIN from simulating adequately future changes on local processes that are 717 

highlighted by the AROME CPM. After bias correction, projected changes in flood frequency 718 

also depend on the forcing climate simulation. While AROME shows no change of flood 719 

frequency, ALADIN simulates a large increase in the number of floods in future climatic 720 

conditions. This trend remains consistent among the two hydrological models, with only little 721 

differences between CREST and GR5H simulations (Figure 7). 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 
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4.5. Climate change impact on flood characteristics 742 

 743 

Figure 8 shows boxplots of the simulated rainfall events (a)) and flood characteristics produced 744 

by these rainfall events (b)) driven by historical and future bias-corrected climate simulations. 745 

Every boxplot is made of all values of a specific metric relative to all extracted flood events or 746 

the associated rainfall events for one dataset. Firstly, most simulated datasets show a negative 747 

future signal for the baseflow component of future floods. Only the GR5H model driven by 748 

ALADIN shows a little increase of the median, but this signal is not clear because the 749 

distribution becomes wider for future baseflows. The same future positive signal can be found 750 

on the ratio metric: all datasets yield a negative trend, reflecting an increase of the runoff part 751 

of the streamflow during floods. The maximum hourly precipitation of the largest rainfall event 752 

preceding the floods is projected to strongly increase. This result is coherent with Sect. 4.1 753 

and confirms that hourly precipitation extremes can yield severe floods in this basin. The most 754 

intense increases seem to concern ALADIN-driven simulations with shifts in distribution 755 

exceeding 25 % percent (the median in historical simulations corresponds to the first quartile 756 

in the future). These results strengthen the confidence of the hypothesis of the decrease of 757 

soil moisture leading to the threshold-effect in AROME-forced simulations. In this study, since 758 

we do not explicitly simulate soil moisture, the evolution of the baseflow could be linked to soil 759 

moisture evolution. The negative trend in the baseflow compensates for the increase of 760 

precipitation extremes until a threshold is reached where the most intense hourly rainfall 761 

exceeds the infiltration capacity.  762 

 763 

For the ALADIN-driven simulations, the constant increase of POT (Fig. 7, Fig. 8) is a 764 

combination of two processes. Firstly, decreases in baseflow are less pronounced for ALADIN 765 

than for AROME, in particular for the GR5H hydrological model, reflecting a smaller infiltration 766 

capacity, and the prevention of the damping role of soils in a warmer future. Secondly, as 767 

explained above, this trend is likely an artifact of the bias-correction causing stronger HPEs in 768 

a warmer climate. Indeed, this can be highlighted on Figure 8 where Ptot shows a little increase 769 

for the ALADIN-driven simulations and a slight decrease in the medians of the AROME rainfall 770 

events. Outliers of Ptot reach the highest values for the ALADIN-driven simulations. The length 771 

of future floods (nQ) is decreasing for all simulations except for GR5H ALADIN, which shows 772 

a slight increase of the median and a lower spread for future scenarios. The lag time (LT) is 773 

projected to decrease for all simulations. This consistent signal of a shorter period between 774 

rainfall centroid and flood peak indicates a projected increase of the flood flashiness in this 775 

basin (FI). In more detail, the median of flashiness index, representing reactivity and intensity 776 

of floods, is projected to increase for all simulations. The smallest increase of the flashiness 777 

index is shown for GR5H-AROME, while the other simulations show noteworthy positive 778 

trends and higher spreads. Some outliers reach extremely high values in the future 779 

projections, warning of potentially rare, but very extreme flood events occurring in the future. 780 

This result is in agreement with the study of Li et al. (2022) who found an increase of flash 781 

flood potential over the USA in the high-end emission scenario, notably in southern regions 782 

that have a wet convective season such as this Mediterranean catchment. 783 

 784 

 785 
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Figure 8: Box plots of historical (light orange) and RCP 8.5 future (dark orange) flood 786 

events characteristics (b)) and related rainfall events (a)) using the bias-corrected 787 

simulations. Each characteristic is detailed in Sect. 3.3. 788 

 789 

 790 

 791 
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Conclusion 793 

 794 

Given the devastating consequences of Mediterranean floods, it is necessary to project if the 795 

recent increase in precipitation extremes is going to continue in a warmer climate and have 796 

impacts on flood severity. Until now, flood projections are based on regional climate models 797 

that cannot accurately simulate precipitation extremes that are yet the main factor causing 798 

these floods. In the last 10 years, emerging convection-permitting models using resolutions of 799 

a few kilometers show encouraging results in the simulations of short-duration precipitation 800 

extremes, opening the door to an enhanced confidence and realism in future flood projections. 801 

 802 

This study compared two regional climate model simulations used as inputs of two 803 

hydrological models to evaluate the possible climate change impacts on floods in a 804 

Mediterranean basin. The AROME convection-permitting climate model (CPM) with a 2.5-km 805 

spatial resolution has been compared to the ALADIN model with a 12-km spatial resolution. 806 

The evaluation of climate simulations show similar results for both models regarding the 807 

reproduction of the annual cycles of temperature and precipitation. There is no added value 808 

of using the CPM for the representation of the seasonality of temperature and precipitation. 809 

Historical climate simulations are globally too cold with a wet bias for spring and summer. 810 

ALADIN and AROME both projected hotter and drier summers in the future, but no drastic 811 

changes in the wet season duration and intensity, except a weak increase for ALADIN for the 812 

wet season precipitation peak. The added value of the CPM can be clearly seen on rainfall 813 

simulation, with a much better representation of extremes with AROME compared to ALADIN, 814 

the latter showing a strong underestimation. Both models project an increase in hourly 815 

precipitation under the RCP 8.5 scenario. That signal is stronger for events above the 99.9th 816 

percentile than more moderate events above the 95th percentile, with a stronger signal for 817 

AROME.  818 

 819 

Yet, both climate simulations required a bias-correction to match the observed discharge and 820 

notably flood events. Similar simulations, and future scenarios, have been obtained with the 821 

two hydrological models considered, a lumped conceptual model, GR5H, and a spatially-822 

distributed, process-based model, CREST, highlighting the robustness of the results given the 823 

two different types of model structures. In terms of floods, the hydrological simulations driven 824 

by the climate model outputs showed contrasted future discharge, with a general increase of 825 

the flood hazard using the ALADIN RCM and on the contrary, an increase only for the largest 826 

floods using the AROME CPM. This indicates that the type of climate model can strongly 827 

modulate how the increase of extreme rainfall could be translated into changes in flood 828 

hazards. The future AROME projections are more in line with previous studies indicating no 829 

changes, or a decline of small to moderate floods, caused by a dampening effect due to 830 

depleted soil moisture, while the most extreme floods are likely to increase along with the more 831 

extreme future rainfall. All simulations also suggest an increase in the flashiness behavior of 832 

the basin, with decreased lag times between rainfall and runoff and a larger direct runoff 833 

contribution to floods, that could make the flood warning and flood mitigation strategies more 834 

difficult in this basin and beyond.  835 

 836 

 837 

The results of the present study have been obtained with a rather complex, but classic, 838 

modeling chain, linking climate models, bias correction and hydrological models. While there 839 
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are inherent uncertainties in the different steps of the methodology applied herein, the 840 

relevance of the results is reinforced since the two hydrological models provided similar 841 

conclusions using the same bias-correction method, thus highlighting the differences 842 

stemming from the climate simulations. However, there is a clear need to strengthen the 843 

conclusions by using a larger ensemble of CPM that are becoming increasingly available for 844 

impact studies (Pichelli et al., 2021). Similarly, to reach regionally relevant conclusions and 845 

notably to derive adaptation strategies for future flood risks, there is also a need to analyze a 846 

broader ensemble of simulated floods on different catchments, and to evaluate how their 847 

different areas and properties could modulate floods in a changing climate. 848 
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